High Dimensional Electromagnetic Interference Signal Clustering Based On SOM Neural Network
نویسندگان
چکیده
منابع مشابه
Application of SOM neural network in clustering
The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high-dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar data items will be mapped to nearby locations on the map. One of the SOM neural network’s applications is clustering of animals due their features. In this paper we produce an experiment to ana...
متن کاملFuzzy Association Rule Reduction Using Clustering In Som Neural Network
The major drawback of fuzzy data mining is that after applying fuzzy data mining on the quantitative data, the number of extracted fuzzy association rules is very huge. When many association rules are obtained, the usefulness of them will be reduced. In this paper, we introduce an approach to reduce and summarize the extracted fuzzy association rules after fuzzy data mining. In our approach, in...
متن کاملA New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملSignal Processing in measuring Electromagnetic Interference
This work analyzes the advantages of broad-band time-domain the electrical measurement applied to electromagnetic interference (EMI) problems. The digital signal processing of EMI measurements allows to emulate in real-time the various modes of conventional analogous equipment. Since time-domain techniques allow processing the amplitude and phasing information of the whole signal spectrum in pa...
متن کاملImproved SOM-Based High-Dimensional Data Visualization Algorithm
In this paper, a new high-dimensional data visualization algorithm based on the Self-Organizing Map (SOM) is proposed. It is named TDSOM (three-dimensional self-organizing map) to describe its special characteristics. TDSOM trains the high-dimensional data with SOM network and projects it into particular point sets in the three-dimensional coordinate system. In the three-dimensional coordinate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics ETF
سال: 2016
ISSN: 1450-5843
DOI: 10.7251/els1620027l